

SUPPORTING INFORMATION

The Acid Catalyzed Cyclization of Epoxyallylsilanes. An Unusual Rearrangement Cyclization Process

Asunción Barbero, Pilar Castreño and Francisco J. Pulido*.

Departamento de Química Orgánica, Universidad de Valladolid, 47011 Valladolid,
SPAIN

pulido@qo.uva.es

Silylcupration of allene. Preparation of intermediate 1.

A solution of phenyldimethylsilyllithium (3 mmol) in THF (3 ml) was added by syringe to a stirred suspension of copper (I) cyanide (3 mmol) in THF (5ml) at 0°C. The resulting black mixture was stirred at this temperature for an additional period of 30 min, and then cooled to -40°C. A slight excess of allene was added from a balloon and the mixture was stirred for 1h at this temperature and then used immediately.

Reaction of 1 with α,β -unsaturated carbonyl compounds.

BF_3OEt_2 (3 mmol) or TMSCl (3 mmol) was added at -40°C to a solution of **2** (3 mmol) in THF and the mixture stirred for 5 min at this temperature. Then the α,β -unsaturated carbonyl compound (3.6 mmol) was added dropwise at -40°C and the resulting mixture was kept at this temperature for 1h. After gentle warming to 0°C the mixture was quenched with saturated ammonium chloride solution (10 ml) and extracted with ether (3x15 ml). The organic layer was dried over MgSO_4 and the solvent rotoevaporated. Purification by flash chromatography gave the oxoallylsilanes **11-17**.

4-Phenyl-5-phenyldimethylsilylmethyl-5-hexen-2-one (11)^{13b}.

4,4-Dimethyl-5-phenyldimethylsilylmethyl-5-hexen-2-one (13). Liquid (90%). IR (film) 1700, 1640, 1100, 836 cm^{-1} . $^1\text{H-NMR}$ (300 MHz, CDCl_3): δ 7.58-7.37 (m, 5H, Ph-Si). 4.81 (br s, 1H, =CHH), 4.67 (br s, 1H, =CHH), 2.45 (s, 2H, $\text{CH}_2\text{-CO}$), 2.07 (s, 3H, $\text{CH}_3\text{-CO}$), 1.79 (s, 2H, $\text{CH}_2\text{-Si}$), 1.10 (s, 6H, 2x CH_3), 0.38 (s, 6H, $(\text{CH}_3)_2\text{-Si}$). $^{13}\text{C-NMR}$ (75 MHz, CDCl_3): δ 208.4 (C=O). 152.0 (=C), 139.5, 133.6, 128.9, 127.8 (Ph-Si), 108.7 (=CH₂), 53.7 ($\text{CH}_2\text{-CO}$), 39.5 (C), 32.0 ($\text{CH}_3\text{-CO}$), 26.9 (2x CH_3), 20.1 ($\text{CH}_2\text{-Si}$), -2.2 ((CH_3)₂-Si). Anal. Calcd for $\text{C}_{17}\text{H}_{26}\text{OSi}$: C, 74.39; H, 9.55. Found: C, 74.55; H, 9.69.

3-Methyl-4-phenyldimethylsilylmethyl-4-pentenal (16). Liquid (72%). IR (film) 2820, 2720, 1725, 1633 cm^{-1} . $^1\text{H-NMR}$ (300 MHz, CDCl_3): δ 9.54 (t, J = 2.3 Hz, 1H, CHO), 7.58-7.37 (m, 5H, Ph-Si), 4.68 (s, 1H, =CHH), 4.65 (s, 1H, =CHH), 2.49 (ddd, J = 15.2, 5.2 and 2.3 Hz, 1H, CHH-CO), 2.45-2.34 (m, 1H, CH-CH_3), 2.28 (ddd, J = 15.2, 7.4 and 2.3 Hz, 1H, CHH-CO), 1.82 (s, 2H, $\text{CH}_2\text{-Si}$), 1.04 (d, J = 6.6, 3H, CH_3), 0.38 (s, 3H, $\text{CH}_3\text{-Si}$), 0.37 (s, 3H, $\text{CH}_3\text{-Si}$). $^{13}\text{C-NMR}$ (75 MHz, CDCl_3): δ 202.2 (CHO), 150.0 (=C), 138.6, 133.6, 129.1, 127.8 (Ph), 107.3 (=CH₂), 49.3 (CH_2), 35.2 (CH), 25.0 ($\text{CH}_2\text{-Si}$), 19.7 (CH_3), -2.9 (CH_3Si), -3.0 (CH_3Si). Anal. Calcd for $\text{C}_{15}\text{H}_{22}\text{OSi}$: C, 73.11; H, 9.00. Found: C, 73.45; H, 9.19.

Synthesis of epoxyallylsilanes

To a solution of trimethylsulphonium iodide (1mmol) in dry THF (5ml) was added dropwise BuLi (1 mmol, 1.6 M ⁷BuLi in hexanes) and the mixture stirred for 5 min at 0°C. Then a solution of the oxoallylsilane (0.8 mmol) in THF (1ml) is added. After stirring for an additional 30 min at 0°C and 1 h at r.t. brine (10 ml) is added and the mixture extracted with ether, dried and evaporated to dryness. The residue was purified by chromatography to give epoxyallylsilanes **18-24**.

[2R*, 4R*]-2-Methyl-4-phenyl-5-phenyldimethylsilylmethyl-1,2-epoxy-5-hexene (18a). Solid (48%). m.p. 74.2-75.1°C. IR (film) : 1630, 1240, 1100, 770 cm⁻¹. ¹H-NMR (300 MHz, CDCl₃): δ 7.59-7.01 (m, 10H, 2xPh), 4.86 (s, 1H, =CHH), 4.77 (s, 1H, =CHH), 2.91 (dd, *J* = 11.7 and 3.6 Hz, 1H, CH-Ph), 2.25 (ddd, *J* = 11.7, 3.6 and 1.5 Hz, 1H, CHH), 2.12 (dd, *J* = 4.7 and 1.5 Hz, 1H, CHH-O), 1.81 (d, *J* = 4.7 Hz, 1H, CHH-O), 1.73 (d, *J* = 13.9 Hz, 1H, CHH-Si), 1.55 (d, *J* = 13.9 Hz, 1H, CHH-Si), 1.58-1.50 (m, 1H, CHH), 1.05 (s, 3H, CH₃), 0.38 (s, 3H, CH₃-Si), 0.32 (s, 3H, CH₃-Si). ¹³C-NMR (75 MHz, CDCl₃): δ 149.0 (=C), 142.8, 138.9, 133.7, 129.2, 128.2, 128.1, 127.9, 126.5 (Ph), 107.3 (=CH₂), 55.8 (C-O), 54.5 (CH₂-O), 48.7 (CH), 42.2 (CH₂), 26.1 (CH₂-Si), 20.8 (CH₃), -2.6 (CH₃-Si), -3.4 (CH₃-Si). MS(EI) *m/z*: 336 (M⁺, 5%), 135 (PhMe₂Si, 100%).

[2R*, 4S*]-2-Methyl-4-phenyl-5-phenyldimethylsilylmethyl-1,2-epoxy-5-hexene (18b). Solid (24%). m.p. 75.9-76.2°C. IR (film) 1630, 1250, 1110, 780 cm⁻¹. ¹H-NMR (300 MHz, CDCl₃): δ 7.55-7.08 (m, 10H, 2xPh), 4.83 (s, 1H, =CHH), 4.71 (s, 1H, =CHH), 3.02 (dd, *J* = 9.4 and 5.4 Hz, 1H, CH-Ph), 2.39 (s, 2H, CH₂-O), 2.06 (dd, *J* = 14.1 and 9.4 Hz, 1H, CHH), 1.94 (dd, *J* = 14.1 and 5.4 Hz, 1H, CHH), 1.71 (d, *J* = 13.9 Hz, 1H, CHH-Si), 1.57 (d, *J* = 13.9 Hz, 1H, CHH-Si), 0.96 (s, 3H, CH₃), 0.30 (s, 3H, CH₃-Si), 0.28 (s, 3H, CH₃-Si). ¹³C-NMR (75 MHz, CDCl₃): δ 149.1 (=C), 143.0, 138.9, 133.7, 129.1, 128.3, 128.2, 127.8, 126.4 (Ph), 107.8 (=CH₂), 56.2 (C-O), 53.2 (CH₂-O), 49.3 (CH), 41.0 (CH₂), 25.1 (CH₂-Si), 21.7 (CH₃), -2.7 (CH₃-Si), -3.3 (CH₃-Si). HREI calc. for C₂₂H₂₈OSi (M⁺) 336.1909 found 336.1926.

2,4,4-Trimethyl-5-phenyldimethylsilylmethyl-1,2,-epoxy-5-hexene (20). Liquid (78%). IR (film) : 1620, 1240, 880 cm⁻¹. ¹H-NMR (300 MHz, CDCl₃): δ 7.58-7.27 (m, 5H, Ph-Si), 4.88 (s, 1H, =CHH), 4.69 (s, 1H, =CHH), 2.63 (d, *J* = 4.9 Hz, 1H, CHH-O), 2.54 (d, *J* = 4.9 Hz, 1H, CHH-O), 1.98 (d, *J* = 14.3 Hz, 1H, CHH), 1.77 (s, 2H, CH₂-Si), 1.39 (d, *J* = 14.3 Hz, 1H, CHH), 1.31 (s, 3H, CH₃), 1.08 (s, 3H, CH₃), 1.06 (s, 3H, CH₃), 0.37 (s, 6H, (CH₃)₂-Si). ¹³C-NMR (75 MHz, CDCl₃): δ 152.8 (=C), 139.6, 133.6, 128.9, 127.7 (Ph-Si), 109.1 (CH₂=), 55.9 (C-O), 54.8 (CH₂), 47.6 (CH₂), 39.4 (C), 28.5 (CH₃), 27.6 (CH₃), 22.1 (CH₃), 20.1 (CH₂-Si), -2.1 ((CH₃)₂-Si). Anal. Calcd for C₁₈H₂₈OSi: C, 74.94; H, 9.78. Found: C, 75.25; H, 9.99.

4-Methyl-5-phenyldimethylsilylmethyl-1,2-epoxy-5-hexene (23). Liquid (67%). IR (film) : 1631, 1248, 876 cm⁻¹. ¹H-NMR (300 MHz, CDCl₃): δ Isomer A: 7.65-7.27 (m, 5H, Ph-Si), 4.75 (s, 1H, =CHH), 4.67 (s, 1H, CHH), 2.90-2.83 (m, 1H, CHH-O), 2.73 (t, *J* = 4.7 Hz, 1H, CH-O), 2.44 (dd, *J* = 5.1 and 2.7 Hz, 1H, CHH-O), 2.17-2.08 (m, 1H, CH-CH₃), 1.86 (s, 2H, CH₂-Si), 1.85-1.66 (m, 1H, CHH), 1.49-1.35 (m, 1H, CHH), 1.10 (d, *J* = 6.8 Hz, 3H, CH₃), 0.40 (s, 6H, (CH₃)₂-Si). Isomer B: 2.71 (dd, *J* = 5.0 and 4.2 Hz, 1H, CH-O), 2.40 (dd, *J* = 5.0 and 2.7 Hz, 1H, CHH-O), 0.39 (s, 6H, (CH₃)₂-Si). ¹³C-NMR (75 MHz, CDCl₃): δ Isomer A: 151.0 (=C), 138.9, 133.6, 129.0, 127.7 (Ph-Si), 106.9 (=CH₂), 51.2 (CH-O), 47.4 (CH₂-O), 38.4 (CH₂), 38.2 (CH), 25.0 (CH₂-Si), 19.3 (CH₃), -2.8 ((CH₃)₂-Si). Isomer B: 150.9 (=C), 106.7 (=CH₂), 50.8 (CH-O) 46.9 (CH₂-O), 38.9 (CH), 38.7 (CH₂), 24.9 (CH₂), 20.1 (CH₃).

Cyclization of epoxyallylsilanes.

BF₃·OEt₂ (1.2 mmol) or TiCl₄ (0.7 mmol) was slowly added to a solution of **18-23** (1 mmol) in DCM (10 ml) under nitrogen. After stirring for 30 min at the corresponding temperature (0 or -78°C) 2 ml of MeOH were added and the mixture allowed to warm to room temperature. The organic layer was washed with brine and dried over MgSO₄. The solvent was evaporated and the residue purified by chromatography.

[1R*, 2R*, 4R*]-2-Methyl-4-phenyl-5-methylenecyclohexanol (25). Liquid (60%). IR (film): 3340, 1640, 1040 cm⁻¹. ¹H-NMR (300 MHz, CDCl₃): δ 7.36-7.20 (m, 5H, Ph), 4.96 (br s, 1H, =CHH), 4.76 (br s, 1H, =CHH), 3.60 (t, *J* = 5.0 Hz, 1H, CH-Ph), 3.41 (td, *J* = 9.0 and 4.2 Hz, 1H, CH-OH), 2.57 (dd, *J* = 13.1 and 4.2 Hz, 1H, CHH-C=), 2.38 (ddd, *J* = 13.7, 5.3 and 3.8 Hz, 1H, CHH), 2.15 (dd, *J* = 13.1 and 9.0 Hz, 1H, CHH-C=), 1.74 (m, 1H, CH-Me), 1.58 (br s, 1H, OH), 1.57 (ddd, *J* = 13.7, 9.6 and 4.8 Hz, 1H, CHH), 1.09 (d, *J* = 6.6 Hz, 3H, CH₃). ¹³C-NMR (75 MHz, CDCl₃): δ 147.8 (=C), 141.9, 128.3, 127.5, 126.0 (Ph), 112.5 (=CH₂), 75.9 (CH-OH), 45.4 (CH-Ph), 40.5 (CH₂), 35.7 (CH₃), 34.8 (CH), 17.7 (CH₃). MS(EI) *m/z*: 203 (M⁺+1, 3 %), 202 (M⁺, 7%), 184 (M⁺-H₂O, 47%), 169 (M⁺-H₂O-CH₃, 54%). NOESY enhancements were found between the following signals: (1) 3.41 (C₁-H_{ax}) to 1.09. (2) 7.36-7.20 (Ph) to 2.15 (C₆-H_{ax}).

[1R*, 2R*, 4S*]-2-Methyl-4-phenyl-5-methylenecyclohexanol (26). Liquid (15%). IR (film): 3370, 1647, 1043, 903 cm⁻¹. ¹H-NMR (300 MHz, CDCl₃): δ 7.49-7.16 (m, 5H, Ph), 4.77 (d, *J* = 1.7 Hz, 1H, =CHH), 4.08 (d, *J* = 1.7 Hz, 1H, =CHH), 3.35-3.24 (m, 2H, CH-OH, CH-Ph), 2.75 (dd, *J* = 12.6 and 4.7 Hz, 1H, CHH=), 2.24 (dd, *J* = 12.6 and 12.2 Hz, 1H, CHH-C=), 1.93 (dt, *J* = 12.6 and 3.8 Hz, 1H, CHH), 1.79-1.61 (m, 2H, CH-Me, OH), 1.52 (q, *J* = 12.6 Hz, 1H, CHH), 1.10 (d, *J* = 6.4 Hz, 3H, CH₃). ¹³C-NMR (75 MHz, CDCl₃): δ 149.7 (=C), 142.3, 128.6, 128.1, 126.4 (Ph), 110.2 (=CH₂), 76.6 (CH-OH), 49.3 (CH-Ph), 45.2 (CH₂), 40.2 (CH), 39.7 (CH₂), 18.0 (CH₃). MS(EI) *m/z*: 202 (M⁺, 7%), 184 (M⁺-H₂O, 40 %), 91 (35%), 77 (10%). NOESY enhancements were found between the following signals: (1) 7.49-7.16 (Ph) to 1.52 (C₃-H_{ax}). (2) 1.52 (C₃-H_{ax}) to 1.10 (CH₃). (3) 3.35-3.24 (C₁-H_{ax}) to 1.52 (C₃-H_{ax}).

cis-2,4,4-Trimethyl-5-methylenecyclohexanol (29). Liquid (7%). IR (film): 3426, 1643, 1055, 899 cm⁻¹. ¹H-NMR (300 MHz, CDCl₃): δ 4.86 (br s, 1H, =CHH), 4.77 (br s, 1H, =CHH), 3.76 (m, 1H, CH-OH), 2.62 (ddt, *J* = 14.0, 3.1 and 1.6 Hz, 1H, CHH-C=), 2.28 (dd, *J* = 14.0 and 3.3 Hz, 1H, CHH-C=), 1.95-1.825 (m, 1H, CH-Me), 1.38 (br s, 1H, OH), 1.25-1.20

(m, 2H, CH_2), 1.11 (s, 3H, CH_3), 1.07 (s, 3H, CH_3), 0.95 (d, $J = 6.8$ Hz, 3H, CH_3). ^{13}C -NMR (75 MHz, CDCl_3): δ 151.1 (=C), 109.8 (=CH₂), 71.5 (CH-OH), 43.5 (CH₂), 40.7 (CH₂), 36.3 (C), 32.4 (CH), 28.8 (CH₃), 26.1 (CH₃), 17.9 (CH₃). Anal. Calcd for $\text{C}_{10}\text{H}_{18}\text{O}$: C, 77.87; H, 11.76. Found: C, 78.15; H, 11.59.

trans-2,4,4-Trimethyl-5-methylenecyclohexanol (30). Liquid (73%). IR (film): 3630, 3392, 1640, 1041, 897 cm^{-1} . ^1H -NMR (300 MHz, CDCl_3): δ 4.71 (s, 1H, =CHH), 4.70 (s, 1H, =CHH), 3.11 (ddd, $J = 11.1$, 9.9 and 5.0 Hz, 1H, CH-OH), 2.45 (dd, $J = 12.8$ and 5.0 Hz, 1H, CHH-C=), 2.33 (ddt, $J = 12.8$, 11.1 and 1.6 Hz, 1H, CHH-C=), 1.75-1.65 (m, 1H, CH-Me), 1.62-1.50 (m, 2H, OH, H), 1.46 (dd, $J = 13.4$ and 3.9 Hz, 1H), 1.09 (s, 6H, (CH₃)₂C), 0.99 (d, $J = 6.4$ Hz, 3H, CH₃). ^{13}C -NMR (75 MHz, CDCl_3): δ 153.5 (=C), 107.2 (=CH₂), 77.4 (CH-OH), 47.6 (CH₂), 41.9 (CH₃), 36.3 (C), 35.8 (CH), 28.3 (CH₃), 26.7 (CH₃), 18.1 (CH₃). MS(EI) m/z : 137 ($\text{M}^+ + 1 - \text{H}_2\text{O}$, 19 %), 121 ($\text{M}^+ - \text{H}_2\text{O}-\text{Me}$, 5%), 95 (27%), 28 (100%).

cis-4-Methyl-3-methylenecyclohexanol (34). Liquid (42%). IR (film): 3400, 1648, 1094 cm^{-1} . ^1H -NMR (300 MHz, CDCl_3): δ 4.69 (s, 1H, =CHH), 4.62 (s, 1H, =CHH), 4.12 (tt, $J = 4.5$ and 3.8 Hz, 1H, CH-OH), 2.58-2.48 (m, 1H), 2.43-2.33 (m, 1H), 2.20 (dt, $J = 13.3$ and 5.1, 1H), 1.83-1.44 (m, 5H), 1.07 (d, $J = 6.8$ Hz, 3H, CH₃). ^{13}C -NMR (75 MHz, CDCl_3): δ 152.8 (=C), 105.2 (=CH₂), 66.6 (CH-OH), 43.0 (CH₂), 35.4 (CH₂), 32.6 (CH-CH₃), 29.9 (CH₂), 18.6 (CH₃). Anal. Calcd for $\text{C}_8\text{H}_{14}\text{O}$: C, 76.14; H, 11.18. Found: C, 76.49; H, 11.39.

trans-4-Methyl-3-methylenecyclohexanol (35). Liquid (28%). IR (film): 3402, 1646, 1250, 1112 cm^{-1} . ^1H -NMR (300 MHz, CDCl_3): δ 4.74 (s, 1H, =CHH), 4.64 (s, 1H, =CHH), 3.81 (tt, $J = 11.1$ and 4.2 Hz, 1H, CH-OH), 2.37 (ddd, $J = 13.0$, 4.2 and 2.1 Hz, 1H, CHH-C=), 2.12-2.01 (m, 4H), 1.62 (br s, 1H, OH), 1.48-1.20 (m, 2H), 1.09 (d, $J = 6.4$ Hz, 3H, CH₃). ^{13}C -NMR (75 MHz, CDCl_3): δ 151.5 (=C), 105.5 (=CH₂), 70.3 (CH-OH), 45.1 (CH₂), 36.8 (CH₃), 34.6 (CH-CH₃), 33.7 (CH₂), 18.1 (CH₃).